Mass Density
\[\text{mass density} = \frac{\text{mass}}{\text{volume}} \]

Speed
\[\text{average speed} = \frac{\text{distance covered}}{\text{elapsed time}} \]

Acceleration
\[a = \frac{\Delta v}{\Delta t} \text{ or } \frac{v_f - v_i}{t_f - t_i} \]
(a=average acceleration; \(v \)=velocity; \(t \)=time; \(v_f \)=final velocity; \(v_i \)=initial velocity; \(t_f \)=final time; \(t_i \)=initial time)

Law of Universal Gravitation
\[F = G \frac{m_1 m_2}{d^2} \]
(F=force of attraction; \(m_1 \) and \(m_2 \)=the masses of the two bodies; \(d \)=distance between the centers of \(m_1 \) and \(m_2 \); \(G \)=gravitational constant)

Work Done by a Force
\[\text{work} = (\text{force})(\text{distance}) \]

Power
\[\text{power} = \frac{\text{work}}{\text{time}} \] (see above formula for work)

Kinetic Energy
\[KE = \frac{mv^2}{2} \]
(KE=kinetic energy; \(m \)=mass; \(v \)=velocity)

Specific Heat
\[Q = cm\Delta t \]
(\(Q \)=quantity of heat; \(c \)=specific heat; \(m \)=mass; \(\Delta t \)=change in temperature)

Electric Current - Strength
\[I = \frac{Q}{t} \]
(I=the current strength; \(Q \)=quantity of charge; \(t \)=time)

Momentum
\[\text{momentum} = (\text{mass})(\text{velocity}) \]

Mass-Energy Equivalence
\[E = mc^2 \]
(\(E \)=the energy [measured in ergs] equivalent to a mass \(m \) [measured in grams]; \(c \)=speed of light [measured in centimeters per second])

Power Expended in an Electric Appliance
\[P = IV \]
(P=power in watts; \(I \)=current; \(V \)=voltage)

Newton's Second Law of Motion
\[\text{force} = (\text{mass})(\text{acceleration}) \]

Torque
\[T = FR \]
(\(T \)=torque; \(F \)=force; \(R \)=radius)

Boyle's Law
when temperature constant:
\[\frac{p_1 V_1}{V_2} = p_2 \]
(\(p_1 \)=original pressure; \(p_2 \)=new pressure; \(V_1 \)=original volume; \(V_2 \)=new volume)

Wave Motion
\[V = nl \]
(\(V \)=wave velocity; \(n \)=wave frequency; \(l \)=wavelength)

Illumination on a Surface Perpendicular to the Luminous Flux
\[E = \frac{I}{r^2} \]
(\(E \)=illumination; \(I \)=intensity of the source; \(r \)=distance from source to surface perpendicular to the beam)

Focal Length of Mirrors and Lenses
\[\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \]
(\(f \)=focal length; \(d_o \)=object distance; \(d_i \)=image distance)

Images in Mirrors and Lenses
\[\frac{h_i}{h_o} = \frac{d_i}{d_o} \]
(\(h_i \)=image height; \(h_o \)=object height; \(d_i \)=image distance; \(d_o \)=object distance)

Ohm's Law
\[I = \frac{V}{R} \]
(I=strength of the current flowing in a conductor; \(V \)=the potential difference across the conductor; \(R \)=its resistance)